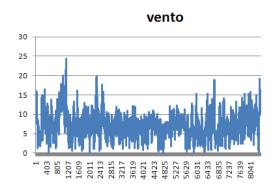
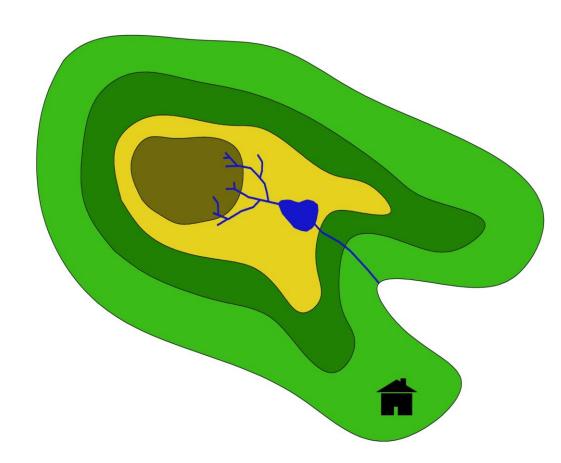

# **Energy Systems**


Miguel C Brito mcbrito@fc.ul.pt 8.3.37


Imagine an energetically isolated island, with 50,000 inhabitants.

(100 people/km<sup>2</sup>, ½ car/person, 2.5people/home)

Available data: hourly time series solar radiation, precipitation, wind and temperature







| Class | Topics                          | Deliverables    |
|-------|---------------------------------|-----------------|
| 1     | Energy Supply.                  |                 |
| 2     | Tutorial work                   | Biblio revision |
| 3     | Students' presentations (1).    | PPT1 & DOC1     |
| 4     | Students' presentations (2).    |                 |
| 5     | Energy demand.                  | DOC1_final      |
| 6     | Tutorial work                   | Biblio revision |
| 7     | Students' presentations         | PPT2 & DOC2     |
| 8     | Energy storage and transmission |                 |
| 9     | Students' presentations         | PPT3 & DOC3     |
| 10    | Energy system                   |                 |
| 11    | Tutorial work                   |                 |
| 12    | Students' presentations         | PPT4 & DOC4     |

#### **General references**

- Bent Sørensen, Renewable Energy Its physics, engineering, use, environmental impacts, economy and planning aspects, 3<sup>rd</sup> Ed, Elsevier Science, 2004
- David JC MacKay, Without the hot air [www.withouthotair.com] 2009
- Roadmap 2050 A practical guide to a prosperous low carbon Europe (Technical Analysis) [www.roadmap2050.eu] 2010

### **Next class**

- groups!
- bibliographic review (e.g. technologies and impacts),
- relevant data (efficiency, costs, etc.)
- preliminary analysis (look at the time series!)

| Group | Energy      | Source        | Comments                | Questions             |
|-------|-------------|---------------|-------------------------|-----------------------|
| 1     | Mobility    | Biofuels      |                         |                       |
| 2     | Electricity | Wind          | Onshore (offshore?)     |                       |
| 3     |             | Solar         | PV on roofs<br>CSP      |                       |
| 4     |             | Hydro         | Run of the river        | kWh(t)/m <sup>2</sup> |
| 5     | Heat        | Biomass       | Co-generation           | €/kWh<br>impact       |
| 6     |             | Solar thermal | Hot water               |                       |
| 7     |             | Waste         | Biogas and incineration |                       |

## **HYDROELECTRICITY** (run of the river)

3 paragraphs about the technology

## <u>Goals</u>

kWh(t)/m<sup>2</sup> (every day, 3 weeks)

€/kWh (assume 40 years project lifetime, 5% discount rate)

Social/environment/economic impact discussion

## **Interesting number**

per capita (kWh/year/person);

energy density (kWh/year/m²)

Height: 50m

Water basin 100 km<sup>2</sup>

20% direct (time constant = 1 day)

40% indirect (time constant = 3 months)

20% left for the fish

20% losses

# Biomass co-generation

3 paragraphs about the technology

Social/economical impacts; rural jobs?

€/kWh; energy density (kWh/year/m²)

# **Assumptions**

crops  $\rightarrow$  ton/ha

GJ/ton

Energy conversion

Explorability coefficient

Costs

#### **Biofuels**

3 paragraphs about the technology €/kWh; per capita (kWh/ano/person); energy density (kWh/year/m²)

# **Solar electricity**

3 paragraphs about the technology

Data: solar radiation time series

€/kWh; per capita (kWh/year/person); energy density (kWh/year/m²)

## **Photovoltaic**

Assumptions: typical efficiency, cost and lifetime; 70m<sup>2</sup>/roof.

 $kWh/m^2(t)$ .

## **CSP**

Subtract diffuse radiation from global radiation time series (use random number and local temperature)

5MW power plant

# Wind energy

3 paragraphs about the technology

Social/environmental impacts

kWh(t)/m<sup>2</sup> (footprint!)

€/kWh

## **Energy from waste**

3 paragraphs about the technology

impacts!

kWh/year/person

€/kWh.

# **Incineration or biogas?**

Estimate kg of waste per person per day (after recycling!).

Conversion efficiency?

Costs?

# **Solar thermal**

kWh(th)/m²; €/kWh

45 litres at 60°C per person

| Water temperature |      |  |  |
|-------------------|------|--|--|
| Summer            | 20°C |  |  |
| Spring/autmn      | 15°C |  |  |
| Winter            | 10°C |  |  |



- bibliographic review (e.g. technologies and impacts),
- relevant data (efficiency, costs, etc.)
- preliminary analysis (look at the time series!)

